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I. OVRVIWU OF PDJICT ACTIVITIRS

The Interaction between a vibrating submerged structure and the sur-

rounding fluid, which features coupling between the surface pressure

distribution and the structural displacement, is an inherent feature for

sound radiation and target strength analyses. A variety of approaches have

been implemented in the past, but each suffers from serious limitations.

Formal mathematical analysis using separation of variables or integral

transform techniques is suitable only for the simplest structural models,

while full finite element descriptions of realistic structures and the sur-

rounding medLum lead to excessively large computer simulations. One

approach uses approximate impedance-type boundary condition of uncertain ac-

curacy to model the fluid response. Boundary element formulations

rationally represent the interaction phenomena without explicitly solving

field equations for the fluid, at the expense of an enormous increase in

computational effort due to the need to cover the surface with a reasonably

fine mesh.

Because of the limitatirn of classical analytical techniques, it was

widely believed that analytical-type solutions can only be obtained in

idealized systems. The primary objective of the project was to develop an

analytical-type approach for modeling fluid-structure interaction in the

frequency domain. This objective was achieved by developing the surface

variational acoustics principle (SVP). SVP represents the spatial dependence

of the surface response as a series expansion in a set of assumed basis

functions. Since the solution derived from SVP is the coefficients of this

series, the primary difference from the results of a classical analysis lies

in the fact that SVP determines these coefficients by numerical techniques.

In essence, implementation of SVP is comparable to using the method of as-

sumed modes in structural dynamics When the mechanical energy functions are

very complicated, as in the case of a doubly curved-shell, determination of

the system coefficients for the latter method also requires numerical tech-

niques to evaluate the stiffness and inertia coefficients. A specific

advantage of SVP formulations in comparison to conventional finite element

and boundary element ailations is the fact that convergence of the rep-

resentation can be judg;. I by examining the solution. One merely needs to
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identify that the higher order modal amplitudes are small -- there is no

need to construct a more refined solution to use as a reference for conver-

gence. In all of the problems addressed by SVP, convergence was found to be

quite rapid. Furthermore, even when a result was not fully convergent, it

was found nevertheless to be remarkably close to the convergent result.

Because SVP represents the surface pressure in a functional series

form, it involves a substantially reduced set of unknowns in comparison to

boundary element formulations, which are based on point-wise discretiza-

tions. In addition, SVP is essentially an optimization process that selects

the coefficients of the modal series so as to minimize the deviationi of the

derived solution relative to the true one.

The objective of the first phase of the project was to develop the SVP

in situations where the surface motion is specified. Such a case arises

when a rigid body is set into a specified motion. Meeting this objective

entailed validating SVP results against known analytical solutions. The

next research phase addressed the broad objective of extending SVP to treat

acoustic radiation from elastic structures. This objective was achieved by

coupling the SVP equations to the method of assumed modes for the structural

vibration. The latter method was chosen for the description of the struc-

tural motion because it too is variationally based, being founded on

Hamilton's principle. In the first two research phases, the analysis was

restricted to cases of axisymmetric excitation. The next phase met the ob-

jective of generalizing SVP to treat situations that are not axisymmetric.

Two cases were considered: nonsymmetric excitation of bodies of revolution

and two-dimensional (plane strain) models. The final objective was to ex-

tend SVP to treat scattering of waves at arbitrary incidence on an elastic

body.

Two considerations influenced the selection of problems for each re-

search phase. Problem that had been solved previously provided validation

of SVP. Once the formulation was validated, problems were selected on the

basis of their relevance to specific structural acoustic phenomena. A par-

ticular problem area that received much attention was the influence of

eigenvalue veering phenomena on predictions of acoustical performance. Such
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phenomena arise when alteration of a system parameter causes the natural

frequencies of different modes to become similar. The In-vacuo mode shapes

in this case are highly sensitive to the value of the system parameter,

which suggests that the forced response of the submerged system should dis-

play similar sensitivity.

II. BASIC RINCIPLE

The derivation of the variational principle is fairly straightforward.

The starting point is the surface integral equation for normal velocity.

The steps involved in deriving this equation begin by taking the gradient at

a field point of the Kirchhoff-Helmholtz integral theorem. Before the field

point is brought to the surface, a regularization procedure is used to

remove a hypersingularity. This regularization is needed because one would

otherwise need to integrate over a double gradient of the Green's function.

The equation derived in this manner is called the second surface integral

equation. The field points and source points appear in symmetrical form in

this integral equation, so it is imminently suitable for constructing a

variational principle. The SVP theorem is obtained by multiplying the

second surface integral equation by a virtual increment in the surface pres-

sure at a surface field point, and then integrating over all such points on

the surface. Once one accounts for the symmetry of the free-space Green's

function between the field and source points, it becomes obvious that the

integration over the surface yields an expression that is the first varia-

tion of a functional J[p], with the surface velocity held constant. The

theorem states that the value of a functional J that depends on the pressure

field is stationary to infinitesimal variations of that field when p is the

true pressure. The specific forms are

SJ - 0 (1)

where
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J~p) - JJ JJ {ke[ () ) ] p(e) p(l)

S S

4wiwpJJ p()Un(r) dA (2)

S

Note that the variational principle governs the surface pressure correspond-

ing to a specified velocity field, so the normal velocity v is heldn

constant in the variation. The quantity U n() is a functional of the sur-

face velocity whose evaluation entails integrating over all points on the

surface, specifically

(0~~ -+~2~P~r;(~r;I) l G(rIf) dA (3)
u n 4w J n1 arj dr

S

In these expressions, ar is the distance between the field and source point,

ar - - 1, and G(?,j) denotes the nondimensional free-space Green's func-

tion,

I 1 exp(ikar): three-dimensions
r '1 : (4)

H•" (kar): two-dimensions

Also, PR denotes the Cauchy principle value of the integral, which is ob-

tained by excluding from the region of integration an infinitesimal patch

centered on ý - ý.

Certain features of the expression for J[p], Eq. (2), should be noted.

All gradients of pressure at any point on the surface are crossed with the

normal vector at that point, so the derivatives represent the gradient of

the pressure tangentally to the surface. No gradients of the Green's func-

tion appear in the pressure integrals, but the normal velocity functional

U n() does contain such a gradient. This term actually has the same sin-

gularity as the Green's function, because the dot product of ni(ý) and 1 -

behaves as r 2 as - ?. As a consequence, all singularities arising in the

evaluation of G(e,j) are integrable.
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In general, a variational principle has two uses. One can apply the

calculus of variations to obtain the governing equations for the system.

Such an equation is known as the Euler-Lagrange equation for the variational

principle. Not surprisingly, the Euler-Lagrange equation obtained from Eqs.

(1) and (2) is the second surface integral equation. A variational

principle may also be used as the basis for an approximate solution. This

is the way in which it was used in the project.

11.1 General Implentation of SVP for Bodies of Revolution

The latest implementation of SVP considers an arbitrary excitation of a

body of revolution. The shape of the body is specified by describing the

cylindrical coordinate functions of its shape generator. This dependence is

expressed in parametric form, with the parameter selected as the arclength s

measured along the generator from one apex. It is convenient to work with

nondimensional variables. For this reason, the parameter is selected as a -

s/a, where the reference length a is defined as the largest radius. Thus,

the two variables locating a point on the surface are the nondimensional

meridional arclength a and the azimuthal angle 0, with the axial and

transverse distance for this point given by specifying aR(a) and az(a).

Evaluation of the SVP integrals requires definition of the second surface

point e which is specified by its arclength parameter P and an azimuthal

angle e relative to the first point.

The arclength and azimuthal angle locating a point on the surface are

also used to describe the surface pressure and surface velocity. The 2w pe-

riodicity of the azimuthal dependence enables one to expand p and v inn
Fourier series. Using the complex form of such series simplifies some of

the ensuing steps, so the pressure and normal velocity distributions on the

surface are described by

~12

p(e,r) I pc2P(a,9) exp(iwt) + C.C.

vn(r,r) cT(a,*) exp(iwt) + C.C. (5)
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where C.C. denotes the complex conjugate of preceding terms, and the spatial

distributions are

- 0 P (a) exp(imD) T v ~ a) expaimD) (6)

These expressions and similar ones for the second surface point are sub-

stituted into the definition of J[p], Eq. (2). This enables one to carry

out the azimuthal portion of each surface integral. As a result of the

axial symmetry of the shape, the azimuthal harmonics uncouple. The varia-

tional functional is thereby found to have the form

J - p2 c 4 a I Jm [P ] (7)

where the nondimensional functional for each azimuthal harmonic is given by

j -~ V I Iaa#)k R(a)R(#)R'(a)R'(P) _ ~~~~~p (Q)P()

+ Dm(a,) [[k2a2R(a)R(#)z' (a)z' () - m2 R' (a)R' (#)]Pm(O)P.m(P)

-R(a)R(#)Pm(a)P m()] Em(a,,O)m[R'(a)R(,O)P (O)P' (,)

R)R)P()' -m m a ma

+ R(*)R' (P)P'(a)Pm (0)] da d,8 - wr2k 2 a2 J R(a)T (a)P_ (a) do

tl2
Sk2 a 2

"- r-oJ o ~ od 8

In the foregoing a prime indicates differentiation with respect to the argu-
ment, and I - max(s)/a.

The functions Ca(a,p), Dm(a,•), Em(a,p), and F (o(a,f) are integrals over

the azimuthal angle of the Green's function, weighted by various factors.

Only the first and last of these functions need tn be computed. The others

are obtainable from recursive identities.
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C (a,B) - 2 exp(ikar) cos(m0) dO (9)(*lp) - 2 JO r(9

D[(, {Cm.1 (aP ) + Cm+l(a,p)] if a > 0
a=, -1 (10)

C (a,#) if m - 0

{2 m.(al) - C +(C.A)] if 1 >

10 if -0

F (a,) - 2R(a)R(P) f 1z *(a) [R(a) - R(P) cos 6]

+ R'(a)[z(a) - z(M)]} Ikar 1 exp(ikar) cos(mO) do (12)
r

where the distance r between points on the surface is related to the shape

functions by

r - {R(a)2+ R(#) 2 - 2R(a)R(P)cos 6 + [z(a) - z(p)]2}1/2 (13)

Each integrand appearing in Eqs. (9) and (12) contains a 1/r singularity,

whose contribution is isolated as elliptic integrals. The remainders are

computed by conventional numerical methods.

The next step in the formulation of SVP is to express the unknown sur-

face pressure as Ritz series expansion, whose general form is

N

P a(a) X P miom (a) (14)

J-1

where the coefficients P are the quantities to be determined. The condi-

tions imposed on the N basis functions #mi are minimal. Necessary

conditions are that reconstruction of the pressure distribution be con-

tinuous everywhere, including the boundaries a - 0 and a - 1, which are the

apexes of the body of revolution. Other conditions, such as symmetry about

any of the coordinate planes, are equivalent to natural boundary conditions

in structural dynamics. If such conditions are not inherent to the basis
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functions selected for the analysis, they will nevertheless be exhibited by

the SVP solution.

In the initial phases of the project, where SVP was verified against

classical analytical results, a priori knowledge of the solution was usually

used to select the appropriate basis functions. With the ultimate merger of

SVP with structural dynamics, such knowledge was not available. The wave-

umber based formulation was developed to address this situation. Because

the arclength max(s) is the extent over which waves may travel, it repre-

sents their effective aperture. Correspondingly, all waves must be

representable as half-range Fourier series using either cosines or sines.

Which type of function one should use depends on the azimuthal harmonic num-

ber. For m - 0, the axisymmetry condition at the apexes is satisfied by

cosines, while continuity of pressure at those locations requires the usage

of sines for n > 0. Thus, the basis functions are selected as

- cos(jwa) if m (10
*mj " *-mJ " sin(jira) if m > 0

The reason for referring to this formulation as the wave-number based SVP

comes from replacing the trigonometric functions above with complex exponen-

tials, and then combining the two Fourier series for meridional and

azimuthal dependence of pressure. The form of this combination is

CON

p t- V V exp[i + ias t] + C.C. (16)j('t - I mj M max(s)
m--eO J-1

which shows that the P coefficients are the amplitudes of the various

pressure waves whose rays trace ý,pirals along the wetted surface. Thus, the

results obtained from this formulation of SVP are the analytical analogs of

the experimental data ultimately provided by acoustical holography.

The final step in the formulation of SVP involves evaluating the

various functionals Jm' Eq. (8), resulting from substitution of the series

expansion for surface pressure, Eq. (14). The general form of this result

is
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N N N

j Z Zmnm P_ - k 2a 2  B P_ (17)j-i n-i j-i

The coefficients Aajn and Bmj are obtained from double integrals expressing

all possible position pairs along a meridian. Their definition is the same
as the corresponding integrals in Eq. (8) above, with P a(a) replaced by

Omi(a), etc. Because the domain of integration for both sets of coeffi-

cients extends over the singularity at a - P, the domain is broken down into

squares and triangles whose sides are parallel to that diagonal. The

numerical values are obtained by application of a Gaussian rule based on

nine interior points for each subdomain.

Because Eq. (17) describes Jm as a function of the P coefficients,

the first variation is

N

-i Z YP 6-Pmj - 0 (18)

J-1

This relation must hold for arbitrary 6Pmt, which can only be true if all

partial derivatives vanish independently. The matrix form of these deriva-

tives is

[A](PM) - k2a 2(B) (19)

where (P ) contains the N values of PmJ"

Evaluation of the coefficients B M requires a description of the manner

in which the surface normal velocity depends on the meridional arclength for

each azimuthal harmonic. In the case of radiation due to rigid body motion,

such dependence is readily obtained by taking the component of the rigid

body velocity in the direction normal to each point on the surface.

Evaluation of radiation from elastic bodies requires structural dynamics

considerations. (Acoustic scattering is treated by modifying the formula-

tion for radiation in a manner that will be discussed later.)
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11.2. Structural Dynamics for Plat and Shells

Many methods for analyzing structural motion are available, including

finite elements, finite differences, and boundary elements. The one

selected to be combined with SVW was the method of assumed modes, which more

properly should be referred to as a Ritz expansion. This method is closest

to SVP from a conceptual standpoint, because both represent the response

over the entire domain in terms of series of global basis functions. (It

would not be difficult to modify the formulation to accomodate the local

basis functions associated with a finite element description of the struc-

ture.) The deformation of a plate or shell is described by displacement

component w normal to its midsurface, and in-plane displacements, u and v.

For a body of revolution these components are in the meridional and

azimuthal directions. Each displacement component is expanded in a series

comparable to that used to describe surface pressure,

* N

M--= J-1

v - ZVMi (t)M .m (a) exp(ime)

m--® J-1

w - LWg (t)M# (a) exp(ime) (20)

m--= J-1

where the various V40 are admissible basis functions for the displacement
mdcomponent indicated by the superscript. (Admissible functions are those

that satisfy the geometric boundary conditions and have the appropriate de-

gree of differentiability.)

The equations of motion governing the amplitudes of the basis functions

are obtained by using the series to construct the kinetic and strain energy.

The virtual work must also be described in terms of these displacements,

with one term consisting of the integral of (-p 6w) to describe the effect

of the acoustic pressure. This procedure leads to the the generalized
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forces Q0 associated with each displacement component. Hamilton's extended

principle for this system reduces to Lagrange's equations for the basis

function amplitudes. Redefining these amplitudes by factoring out the har-

monic temporal variation leads to

IIKT K . 2 0 I 0 V a o (21)

wKT K] K vw 0 0m q

where each element in the above matrices represents an N dimensional parti-

tion. The various K and M represent stiffness and mass coefficients

associated with the displacement components indicated by their subscript,

the Q terms are the generalized forces due to the dynamic excitation, and r

are the coupling factors describing the contribution of each pressure basis

function to the generalized force.

Because the normal components of velocity in the fluid and the struc-

ture must be continuous across the wetted surface, the characterization of

the normal displacement as a series defines the T terms in Eq (6), which

is the mericional dependence of normal velocity in the m th azimuthal har-

monic. Matching the meridional dependencies of the structure and fluid

velocities leads to

N

Tm - -ika U Mi (t)M # () (22)
J-1

When this representation of the meridional variation of the w th harmonic of

surface velocity is used to evaluate the coefficients B in Eq. (17), one

finds

N

B - X An WA n (23)

J-1
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where A represent coupling factors describing the mapping of the struc-
mjn

tural velocity into the functional space used to describe the pressure. The

result of using the foregoing to form the SVP equatiozs is

[ A. ](P.) - k 2a 2 [ A. ](w) (24)

The coupled response of the surface pressure and the motion of the structure

in each azimuthal harmonic may be determined solving the SVP equation (24)

simultaneously with the structural dynamics equation (21).

11.3. Modifications for Scattering

The development thus far addressed radiation problems. A simple

modification extends the treatment to cases where the excitation is an inci-

dent acoustic signal. The key is to decompose the pressure into incident

and scattered parts. Then the scattered pressure on the surface satisfies

the same set of surface integral equations as the total surface pressure in

a radiation problem, provided that the normal velocity is defined as the

particle velocity in the scattered signal. Continuity of normal velocity on

the surface requires that this particle velocity is the difference between

the structure's velocity and the normal component of particle velocity in

the incident wave. Euler's equation gives the latter, so that

S- Vpsca k 2 2aw - n cVp (25)

It follows that replacing any term traceable to n - Vp in the SVP equations

by the right side of the above leads to relations governing the scattered

part of the pressure field.

In order to apply this result, the incident pressure and particle

velocity are expanded in azimuthal Fourier series.

nc- 1 2 J' incpt(•) . p" pt a(a) exp(ime)
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Vmic-• _ nc(6

n(i) ) " 2 Oc2 Tinc (a) exp(ime) (26)

This converts the SVP equations to

[A. ](P) -k 2 a2 [ A. ]( a k 2a2{inc)
"A3  a (B

Incwhere (Bin) represents the values of B corresponding to a surface
mj incvelocity whose meridional dependence is Ta (a). In addition, the presence

of an incident pressure field adds to the generalized forces driving the

normal displacement. This leads to an additional generalized force, which
incis described by replacing % by Q + K . The solution of the SVP and

structural dynamics equations in this approach yield the displacement

amplitudes and the scattered part of the pressure field. The total surface

pressure may then be determined by superposing the incident field's con-

tribution to each azimuthal harmonic.

III. RESEARCH TOPICS AND RESULTS

The following discusses the themes of the various research phases of

the project. The numbers appearing at the end of each section refer to the

papers listed in the next section.

111.1. Radiation from Vibrating Rigid Bodies (papers # 1-8)

Each research phase in which the SVP approach was generalized began

with the task of evaluating the surface pressure on a body whose motion is

prescribed. The first cases to be pursued were a transversely oscillating

thin rigid disk, a sphere whose surface is executing a breathing mode vibra-

tion, and a rigid sphere and a flat-ended cylinder oscillating parallel to

the axis of symmetry. The basis functions for pressure were initially sug-

gested by the available analytical solutions, rather than the sinusoidal
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forms associated with the wavenumber formulation of SVP. A study of the os-

cillating rigid disk was also carried out using elemental basis functions

comparable tcu those employed for boundary elements.

Each of the foregoing cases constitutes an axisymetric system. The

extension of SVP to nonsymmetric cases addressed a hemi-capped cylinder, and

a spheroid undergoing rigid body motion in the axial and beamwise direction,

as well as a rotational oscillation about the centroid. The former problem

provided an important consistency check. If one sets the length of the

cylindrical section to zero, the system is a sphere. The pressure distribu-

tion for beamwise translation is not axisy etric, whereas axial translation

represents an axisymmetric normal velocity distribution. It was verified

that the SVP results for the beamwise case gave the same surface pressure as

that obtained for axial motion, and both results were verified to give the

same result as the analytical solution for the axial translation. It was in

this phase of the research program that the wavenumber formulation of SVP

was developed.

Addressing problems of this type was very useful for a number of

reasons. Because structural dynamics equations were not an issue, it was

easier to debug the implementation of the SVP equations. Furthermore, rigid

body motions excite only the m - 0 and m - 1 azimuthal harmonics, so it was

not necessary to worry about convergence and numerical error associated with

high harmonics. Another aid to validating the analysis was the fact that

analytical solutions were available in some cases. In addition, studies of

slender cylinders and prolate spheroids led to some interesting results

regarding the the effects of curvature on a surface. In every case, conver-

gence of the pressure amplitudes led to results that differed by less than

1% from those of analytical solutions. Similar close agreement for a hemi-

capped cylinder was obtained from a comparison with the predictions of the

CHIEF boundary element program. It is important to realize that convergence

of the series occurs only if the higher order terms in series are very

small. It follows that one can examine the magnitude of the higher order

terms to determine that the solution has converged--there is no need to per-

form an analysis using a diiferent series length to determine the adequacy

of a result.
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111.2. ladiation from Ilastic bodies (papers # 9-22)

The research plan was to use the rigid body motion problem to general-

ize the SVP formulation. Once each effort was finished, the next task was

to implement the structural dynamics aspects for that version. Thus, the

first case where structural dynamics was considered was a circular elastic

membrane or flexural disk whose boundary is supported by an annular baffle.

The width of this baffle could vary from zero to infinity. Only axisymmetric

excitations were considered. The basis functions for the structure in these

studies were selected as the In-vacuo normal modes. Several types of basis

functions for the surface pressure representation were addressed. It was

shown that the basis functions used to study the rigid body case lead to

ill-conditioning when a large number of functions are retained, because the

high order functions are not linearly independent from a computational view-

point. Bessel and sinusoidal basis functions were shown to agree well with

the analytical solution derived by Alper and Magrab, as were boundary

element-type functions that spanned small subdomains. A further study of

the elastic plate considered the effect of annular stiffeners. This problem

introduced the concept of component mode analysis, which was subsequently

implemented by Igusa and Achenbach of Northwestern University as a fundamen-

tal aspect of their ONR sponsored research program.

The next elastic structure to be addressed was a spheroidal shell of

arbitrary aspect ratio. Two formulations of the fluid-structure coupling

were derived. The first, which was termed the "direct method" followed the

formulation described in the previous section. The second was called the

"modal method," because the assumed modes method is used to evaluate the In-

vacuo natural frequencies and mode shapes. These free vibration properties

were then used '%.3 the basis functions for the SVP formulation. The results

for free vibration were shown to be extremely accurate, and to be more com-

prehensive than any previ•,usly available. An interesting feature was shown

to be a coelescence of eigenvalues at certain aspect ratios, which launched

a separate research phase that will be discussed later. The only data

available for validation in the fluid-loaded problem was for a spherical

shell. The SVP results were shown to be very close to Hayek's analytical

solution.
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An elastic plate in an annular baffle was the first study to remove the

restriction to axisymmetric situations. The plate was subjected to an ec-

centric concentrated harmonic force normal to the surface. This study was

the first to implement the Fourier series representation of the azimuthal

dependence. No prior work had considered this problem, but the results were

examined for self-consistency and physical reasonableness. At the present

time, the corresponding SVP implementation for shells is under development.

111.3. 3cttering fnm Rigid Bodies (paper # 23)

It vas decided to delay considering acoustic scattering until the SVP

formulation was generalized to handle non-axisymetric problems. The inci-

dent signal in each SVP analysis was a plane acoustic wave at arbitrary

incidence. Results have been obtained for scattering from flat and hemi-

capped cylinders, and from prolate spheroids whose surface is stationary.

These were compared to numerical solutions obtained from the CHIEF and non-

symmetric SHIP programs. In every case the results were virtually identical

to the numerical solutions. A consistency check was also carried out for

the case of a sphere, where the solution should yield the same pressure dis-

tribution as that predicted analytically, independent of the angle of

incidence.

111.4. The Interior Cavity Problem (papers # 21, 22, 24, 25)

Because the stationary principle for an SVP formulation is derived from

the second surface integral equation, there is no unique solution at fre-

quencies that match the eigenfrequencies for the interior Neumann problem

(zero velocity on the boundary). A study was performed to assess whether

the over-determined formulation employed in CHIEF could be used. This en-

tailed adding auxiliary constraint equations requiring that the interior

pressure vanish at selected points or on average over an interior surface.

Although the concept worked well, it has not been implemented into the

general SVP formulation. This decision stemmed from observations in the

analysis of radiation from a spheroidal shell. That work showed that even

if one were to come very close to one of these frequencies, the effect would

be either very minor or imperceptible. The apparent reason for this result

is the limited size of an SVP model, i.e. the relatively small number of

terms required to obtain an accurate solution. As a consequence, the system
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of equations remains well-conditioned even if one is within 0.01% of the

spurious resonance frequency. This is an important factor because the

decomposition of the problem into azimuthal harmonics means that the

spurious resonance frequencies will occur in relatively equal density at

each azimuthal harmonic. In contrast, conventional boundary element for-

mulations encounter an increasing density of spurious frequencies as the

excitation frequency increases, because they treat all azimuthal harmonics

simultaneously.

111.5. Uigenvalue Veering Phenomena (papers # 26-33)

The analysis of the in-vacuo modes of a spheroidal shell disclosed that

at certain length to radius ratios, the natural frequencies of the flexural

and extensional branches become very close. Further increase of this aspect

ratio led to modal vibration patterns that exhibited localized displacement

patterns. Comparable phenomena, which are grouped under the term of

"eigenvalue veering phenomena", had been studied for other systems.

However, all such work failed to describe the actual extreme sensitivity of

the mode shapes as the system parameter is varied through the zone where

eigenvalue veering occurs. A general treatment was derived as part of the

research program, and then applied to the spheroidal shell problem. It was

shown that the localized modes cannot be omitted from the modal version of

SVP, even if their natural frequencies are much higher than the excitation

frequency. This result apparently stems from the extreme efficiency with

which these modes radiate.

Another study of the effect of eigenvalue veering phenomena on acoustic

radiation was carried out using a two-dimensional flat plate in an infinite

baffle. Addressing this situation necessitated extending SVP to handle two-

dimensional (plane strain) problems. That formulation was validated by

comparing the SVP results for a single-span plate to the integral transform

solution. Then the formulation was applied to a two-span plate whose in-

dividual spans are nearly uncoupled by a stiff torsional spring acting at

the center support. The In-vacuo analog of this problem had served as a

prototype for more than a decade for studies of eigenvalue veering. The

startling result that emerged form this work was that a shifting the posi-

tion of the center support by as little as 1% of the span length can raise
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the total radiated power by a factor of two. Because a complicated syste3

such as submarine is sure to have natural frequencies that are very close,

it is reasonable to anticipate that comparable eigenvalue veering phenomena

will occur in those systems. This hba significant implications for con-

structing mathematical models, because it suggests that little details of

construction may have a strong influence on acoustical performance.

IV. CWSU3

This research project has resulted in development of the SVP technique

for modeling the coupled acoustic-structure response of submerged bodies.

The technique requires determination of a comparatively small number of

variables. In the wavenumber version of SVP, these variable are par-

ticularly meaningful from a physical standpoint, because they represent the

amplitudes of helical-type waves that propagate through the structure and

through the fluid. SVP solutions have the Important property of allowing

one to ascertain that the results are convergent and represent the response

to a satisfactory level, without requiring evaluation of a more refined

model for comparison. A number of generalizations ultimately yielded a

technique that is equally suitable for radiation and scattering. The only

capability requiring further development is analysis of non-axisymuetric

problems in curved shell structures. Because of the relatively small number

of unknowns to be determined, and the fact that those unknowns are physi-

cally meaningful, the technique provides physical insight into the response

of submerged structures. These features make SVP very useful as a research

tool, as well as a tool for design parameter studies.
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